3 research outputs found

    Evaluating rules of interaction for object manipulation in cluttered virtual environments

    Get PDF
    A set of rules is presented for the design of interfaces that allow virtual objects to be manipulated in 3D virtual environments (VEs). The rules differ from other interaction techniques because they focus on the problems of manipulating objects in cluttered spaces rather than open spaces. Two experiments are described that were used to evaluate the effect of different interaction rules on participants' performance when they performed a task known as "the piano mover's problem." This task involved participants in moving a virtual human through parts of a virtual building while simultaneously manipulating a large virtual object that was held in the virtual human's hands, resembling the simulation of manual materials handling in a VE for ergonomic design. Throughout, participants viewed the VE on a large monitor, using an "over-the-shoulder" perspective. In the most cluttered VEs, the time that participants took to complete the task varied by up to 76% with different combinations of rules, thus indicating the need for flexible forms of interaction in such environments

    Levels of control during a collaborative carrying task

    Get PDF
    Three experiments investigated the effect of implementing low-level aspects of motor control for a collaborative carrying task within a VE interface, leaving participants free to devote their cognitive resources to the higher-level components of the task. In the task, participants collaborated with an autonomous virtual human in an immersive virtual environment (VE) to carry an object along a predefined path. In experiment 1, participants took up to three times longer to perform the task with a conventional VE interface, in which they had to explicitly coordinate their hand and body movements, than with an interface that controlled the low-level tasks of grasping and holding onto the virtual object. Experiments 2 and 3 extended the study to include the task of carrying an object along a path that contained obstacles to movement. By allowing participants' virtual arms to stretch slightly, the interface software was able to take over some aspects of obstacle avoidance (another low-level task), and this led to further significant reductions in the time that participants took to perform the carrying task. Improvements in performance also occurred when participants used a tethered viewpoint to control their movements because they could see their immediate surroundings in the VEs. This latter finding demonstrates the superiority of a tethered view perspective to a conventional, human'seye perspective for this type of task

    Verbal communication during cooperative object manipulation

    No full text
    Cooperation between multiple users in a virtual environment (VE) can take place at one of three levels, but it is only at the highest level that users can simultaneously interact with the same object. This paper describes a study in a straightforward realworld task (maneuvering a large object through a restricted space)was used to investigate object manipulation by pairs of participants in a VE, and focuses on the verbal communication that took place. This communication was analyzed using both categorizing and conversation analysis techniques. Of particular note was the sheer volume of communication that took place. One third of this was instructions from one participant to another of the locomotion and manipulation movements that they should make. Another quarter was general communication that was not directly related to performance of the experimental task, and often involved explicit statements of participants’ actions or requests for clarification about what was happening. Further research is required to determine the extent to which haptic and auditory feedback reduce the need for inter-participant communication in collaborative tasks
    corecore